Главная Бухгалтерия в кармане Учет расходов Экономия на кадровиках Налог на прибыль Как увеличить активы Основные средства
Главная ->  Занимательная радиотехнология 

1 2 3 4 [ 5 ] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Какова же скорость движения электронов, вызванная действием электрического поля?

В проводах скорость движения электронов под действием поля в промежутках времени между двумя столкновениями может достигать нескольких километров в секунду. Но бесчисленные столкновения приводят к тому, что действительная скорость движения электронов в направлении действия поля очень мала.Эта скорость в конечном счете определяется напряженностью поля и при напряженности поля 1 в на сантиметр длины провода составляет около 10 см1сек.

Но такая напряженность поля очень велика и встречается редко. Чтобы создать такое ноле в проводе длиной 1 км, надо подвести к нему напряжение 100 ООО в. Фактически имеющие место напряженности поля бывают значительно меньше, и средняя скорость движения электронов

в направлении действия такого поля достигает не-,многих миллиметров или даже долей миллиметра в секунду. Например, в осветительной сети скорость движения электронов составляет 1-3 мм/сек. За час электроны передвигаются на расстояние всего около Юм. Если быскорость распространения электрического тока по проводам определялась скоростью движения электронов, то электрическая связь была бы немыслима. Телеграмма, посланная из Москвы во Владивосток, пришла бы туда через 100 лет. Ее получили бы правнуки адресата. А лампочку, простую электрическую лампочку в люстре, нам приходилось бы включать за полчаса до того, когда нам потребуется ее свет, так как раньше электроны не добрались бы до нее. (В этих примерах мы считаем, что имеем дело с постоянным током, который создается движением электронов в одну сторону. При переменном токе электроны совершают лишь колебательные движения с такой же малой скоростью около среднего положения и вообще не перемещаются на большие расстояния.)


В вакууме скорость движения электронов больше, чем в проводах. Это объясняется тем, что здесь электроны испытывают сравнительно мало столкновений с молекулами разреженных газов, оставшихся после откачки. Мы имеем здесь в виду такую степень вакуума, которая фактически бывает в электронных лампах. Поэтому в этом случае скорость движения электронов определяется только ускоряющим действием поля и фактически значительно превышает тепловую скорость. В электронных лампах при анодном напряжении 250 б электроны пролетают пространство между катодом и анодом со скоростью около 9 ООО км/сек. Еще значительно быстрее мчатся электроны в телевизионных трубках, где они разгоняются напряжением во много тысяч вольт.

Направление теплового движения электронов в проводниках хаотично. В каждый данный момент известное количество электронов имеет такое направление

движения, которое должно привести к вылету их за пределы проводника. Однако преодоление поверхностного слоя представляет для электронов серьезное затруднение, так как он отталкивает их внутрь проводника (см. стр. 95). Чтобы прорваться наружу, электроны должны приобрести большую скорость. Например, для того чтобы вылететь из вольфрама - металла, из которого делаются нити накала радиоламп, электроны должны приобрести скорость

1 270 км/сек.

Подобную скорость электроны могут приобрести только при сильном нагревании проводника. Когда нужная скорость достигнута, начинается вылет электронов из проводника во внешнее пространство - начинается электронная эмиссия. Проводник нз вагтьфрама для получения нормальной электронной эмиссии должен быть нагрет примерно до

2 500° С.

Таким образом, скорость движения электронов в осветительных сетях и обычной электроаппаратуре, например


тител



в радиоаппаратуре, колеблется в пределах примерно от долей миллиметра до нескольких тысяч километров в секунду. При этом большие скорости наблюдаются только в накаленных проводниках и электронных лампах, в других же случаях скорость движения - миллиметры в секунду.

А как же обстоит дело с мгновенным распространением электрического тока? Ведь это же не фикция! Лампочка под потолком загорается практически одновременно с поворотом включателя.

Именно поэтому несколько выше и было сказано, что в само понятие электрический ток должна быть внесена ясность. Электрический ток физически - это поток электронов, движущихся в большинстве случаев очень медленно. Но попробуем внимательно проследить сам механизм тока.

Возьмем длинный провод, один из концов которого присоединен к полюсу аккумулятора (или любого другого источника тока), а второй конец останется неприсоединен-ным. Электродвижущая сила аккумулятора произведет в этой незамкнутой цепи некоторое перераспределение электронов. Если, например, провод присоединен к положительному полюсу аккумулятора, то на его свободном конце образуется нехватка электронов, соответствующая положительному заряду, а на свободной клемме аккумулятора создастся избыток электронов (отрицательный заряд). Если теперь свободный конец провода присоединить ко второй клемме аккумулятора, то электроны устремятся с клеммы в провод, чтобы восполнить там нехватку электронов. Само по себе движение электронов будет, как мы знаем, медленным, но как только первые электроны придут в движение, их поле заставит двигаться электроны, находящиеся впереди. Поле этих электронов в свою очередь побудит начать движение следующие электроны и т. д. В результате поле, заставляющее электроны двигаться, помчится по проводу с большой скоростью. Вот эта скорость - скорость распространения поля - действительно велика. Ее можно приравнять к скорости света. Когда мы поворачиваем выключатель лампы, поле с баснословной скоростью проносится по проводу и заставляет двигаться электроны в нити накала лампы, вследствие чего происходит ее нагревание.

Но было бы все же неправильно утверждать, что электрический ток (в таком его понимании) распространяется со скоростью света. Если замыкаемая цепь очень коротка и

прямолинейна, то скорость распространения тока действительно не отличается существенно от скорости света (300 ООО км/сек). Однако в длинных проводах скорость тока меньше скорости света, причем разница зависит от рода провода (от рода линии). С этим приходится практически считаться. Существуют, например, приборы для определения повреждений проводных линий. Они работают по принципу радиолокатора: в линию посылается импульс тока, который отражается от места повреждения и возвращается . к месту посылки, где и улавливается. По времени между посылкой импульса и возвращением его и судят о расстоянии до места повреждения. В этом случае надо знать точную величину скорости распространения тока в данной линии, иначе определение расстояния не будет верным.

270000 КМ/СЕК



И вот измерения показали, что в воздушных линиях скорость распространения тока колеблется в пределах от 270 ООО до 290 ООО км/сек, а в некоторых силовых подземных кабелях она составляет всего 160 ООО км/сек - почти вдвое меньше скорости света.

Таким образом, различных скоростей тока очень много. Эта величина в зависимости от того, с какой позиции ее рассматривать, может быть равна и долям миллиметра и сотням тысяч километров в секунду, но она никогда не бывает равна скорости света (в пустоте).




ЧЕТЫРЕ ВИДА


Что такое электрический ток?

В наши дни физические знания распространены очень широко, и большинство ответит на такой вопрос двумя словами: Поток электронов .

Однако теперь подобный ответ неточно отражает физическую суш,ность явлений.

Определение поток электронов относится к той эпохе, когда приходилось встречаться главным образом с электрическими явлениями в виде тока в проводниках. В этом случае электрический ток действительно представляет собой упорядоченное перемещение электронов, которое вполне может быть сравнено с потоком. Подвижными носителями электрических зарядов здесь являются свободные электроны, в большом количестве движущиеся в одном направлении, и это движение их может быть по праву названо потоком.

Но это определение далеко не всегда соответствует действительности.

Весьма распространенными носителями электрических зарядов являются ионы. Атомы в нормальном состоянии электрически нейтральны: положительный заряд ядра 1ЮЛностью уравновешивается отрицательными зарядами электронов в его электронных оболочках . Но атомы могут терять электроны или же захватывать лишние, сверхкомплектные электроны. В обоих случаях атом становится ионом.

Атом с нехваткой электронов имеет положительный заряд, а атом с излишним электроном - отрицательный. Движение ионов тоже представляет собой электрический ток. По внешним проявлениям нельзя определить, какие носители электрических зарядов в данном случае движутся - электроны или ионы.

Однако ионы более громоздки, чем электроны; ведь ион - это целая система элементарных частиц. Поэтому ионы далеко не во всех проводниках могут передвигаться свободно. Вот в жидких проводниках с легко подвижными 34

частицами ионы могут перемещаться, и электрический ток в жидкостях образуется не только электронами, но также ионами. В электролите аккумуляторов и гальванических элементов течет ионный и электронный ток; положительные ионы движутся в одну сторону, а электроны - в обратную.

Но ионы движутся в электролите. Войти в твердые электроды, посредством которых ток выводится из элемента-или аккумулятора, ионы не могут. Поэтому на границе между жидкостью и электродами происходит своего рода преобразование ионного тока в электронный и наоборот. Положительные ионы, притягиваясь к отрицательному электроду, на котором скопились избыточные электроны, заимствуют у него недостающие у них самих электроны и превращаются в нейтральные атомы. Понятно, почему это происходит. Собственная скорость электронов в твердом электроде и электрическое поле, действующее в электролите, недостаточны для того, чтобы электроны могли преодолеть сопротивление поверхностного слоя и вырваться наружу. Но когда вплотную к электроду подходит положительный ион, поле получается настолько сильным, что электрон вырывается из электрода.

К положительному электроду, обедненному электронами, притягиваются как свободные электроны, так и отрицательные ионы, которые отдают свои избыточные электроны, тоже превращаясь в нейтральные атомы.

К этому надо добавить, что ионами, образующими ток в жидкостях, могут быть не только атомы с недостатком или избытком электронов, но и соответствующим образом ионизированные молекулы, т. е. сочетания атомов.

Ионный ток образуется также в газах: в неоновых лампах, газотронах и пр. В электронных лампах основной ток - электронный, но здесь могут параллельно существовать и ионные токи, потому что оставшиеся в колбе лампы атомы и молекулы газа могут ионизироваться в результате столкновения с электронами, летящими с большой скоростью. Например, работа электронно-лучевых трубок . основана на использовании тонкого пучка электронов (электронного луча), но наряду с этим в трубках образуются и ионы. Вследствие бомбардировки этими ионами (отрицательными ионами кислорода) на экранах телевизоров образуются завоевавшие печальную известность ионные пятна . Теперь, чтобы сделать невозможным появление 2 35



1 2 3 4 [ 5 ] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

© 2024 Constanta-Kazan.ru
Тел: 8(843)265-47-53, 8(843)265-47-52, Факс: 8(843)211-02-95