Главная Бухгалтерия в кармане Учет расходов Экономия на кадровиках Налог на прибыль Как увеличить активы Основные средства
Главная ->  Занимательная радиотехнология 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 [ 22 ] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Звуковоспроизводящее устройство

Полоса воспроизводимых частот, гц

Механическое (мембрана - рупор граммофона). . Лорошии электродинамический громкоговоритель Агрегат из двух громкоговорителей.........

100-4 000 80-5 ООО 50-6500

40-12 000 30-16000

> нескольких громкоговорителей высокого класса...................

Специальные агрегаты высшего качества . . . . .


Уровень техники звуковоспроизведения теперь достаточно высок. Воспроизведение стереофонических агре-



100-4000 ГЦ

60-5000 ГЦ


60-6500 ГЦ


40-10000 ГЦ


30 - 15 000 ГЦ

гатов высшего качества весьма приближается к естествен-ному.


Современная радиотехника использует колебания очень высоких частот.

Сверхвысокие частоты обладают рядом особенностей 1ак, например, для передачи энергии сверхвысокой частоты 132

при длине волны всего несколько сантиметров обычные провода совершенно непригодны и даже высокочастотные кабели вносят большие потери. Энергию такой частоты передают по специальным устройствам - волноводам, которые представляют собой полые металлические (чаще всего медные) трубы круглого или прямоугольного сечения, поперечные размеры которых близки к длине волны (но не меньше половины ее). Электромагнитные волны распространяются внутри такой трубы и таким образом передаются, например, от передатчика к антенне или от антенны к приемнику. При этом потери энергии в самом волноводе очень невелики.

Резонансные контуры для таких частот также имеют совершенно непривычную конструкцию. У них отсутствуют отдельные катушки и конденсаторы, так как индуктивность




даже одного витка оказывается чрезмерно большой. Контур для сантиметровых волн представляет собой как бы металлическую банку цилиндрической, прямоугольной или более сложной формы, внутри которой и происходят электромагнитные колебания. Размеры контура зависят от длины волны. У цилиндра, например, диаметр должен быть равен примерно половине длины волны. Контуры такого рода отличаются чрезвычайно высокой добротностью. Они обладают всеми характерными свойствами резонансных контуров и названы объемными резонаторами, так как колебания происходят внутри их объема.

Но этим не исчерпываются особенности аппаратуры для сверхвысоких частот. Одно из многих их поразительных свойств заключается например, в том, что энергию волн длиной в несколько сантиметров можно, оказывается, передавать по линии из изоляционного материала - диэлектрика.

499314



Это не опечатка: именно по проводнику из непроводника. Оказывается, если изготовить волновод в виде стержня соответствующих размеров из диэлектрика, обладающего малыми потерями и высокой диэлектрической проницаемостью, то электромагнитная энергия вдоль такого волновода будет распространяться так же, как если бы он был сделан из металлической трубы. На волнах длиной 1-3 см такие диэлектрические волноводы оказьгоаются иногда даже более выгодными и удобными, чем металлические.

Теперь нас, пожалуй, уже не удивит и то, что для сантиметровых волн можно применить неметаллическую антенну, а также антенну из изоляционного материала. Такая антенна представляет собой небольшой стержень из диэлектрика, утолщенный с одного конца и постепенно сужающийся к другому. Электрическая мощность подводится к антенне со стороны ее толстого конца. Для излучения волн длиной, например, 10 см потребовался бы стержень из полистирола длиной 30-40 см, имеющий диаметр порядка 4,5-5 см в своей утолщенной части и порядка 3 см на тонком конце. Можно применить и другой диэлектрик с малыми потерями.



Что произойдет, если два токонесущих провода замкнуть металлической перемычкой? Очевидно, между этими проводами получится короткое замыкание.

Это, конечно, верно, но не всегда. На постоянном токе металлическая перемычка всегда будет замыкателем. Но при переменном токе металлической перемычке можно придать такую длину, что поведение проводника резко изменится: он как бы потеряет свою способность проводить и превратится в изолятор. Это особенно легко осуществить на сверхвысоких частотах, где перемычки имеют небольшие размеры.

Если, например, двухпроводную линию, по которой передается энергия колебаний с частотой 100 М.гц (волна 134

3 м), замкнуть П-образным проводом, боковые стороны которого имеют в длину по 75 см, то такая перемычка не явится коротким замыканием: процессы в линии будут происходить так, как будто никакой перемычки нет, как будто перемычка сделана из изоляционного материала. Можно длинную двухпроводную линию укрепить на таких металлических изоляторах , и никакой утечки энергии не произойдет.

Такое необычайное и противоречащее на первый взгляд здравому смыслу явление объясняется тем, что процессы в проводниках носят особый характер, когда длина провода оказывается соизмеримой с длиной волны. В нашем случае длина стороны металлической стойки (75 см) равна четверти длины волны (3:4 = 0,75 м). Мы получаем отрезок двухпроводной линии длиной в четверть длины волны, замкнутой накоротко с одной стороны. При присоединении такого отрезка к линии, по которой передается энергия колебаний, имеющих ту же длину волны, в нем возбуждаются так называемые стоячие волны, особенностью которых оказывается то, что на открытом конце, т. е. в том месте, где стойка соединяется с линией, ток равен нулю.

А если ток равен нулю, то -это эквивалентно случаю, когда сопротивление равно бесконечности. Металлическая четвертьволновая стойка обладает для резонансной частоты бесконечно большим сопротивлением, т. е. является как бы изолятором.

ДВУХПРОВМИДВ ВЫС0К0ЧДСТ01Н&Я

Д5УХЛР0В0ЛКАЙ

Высокочдстотндя линия


ИЕТДЛЛиЧЕСКИЙ ИЗОЛЯТОР

ОТЫЧНЫЕ ИЗОЛЯТОРЫ

(КЕРАМЯЧЕСКИС)

МЕТАЛЛИЧЕСКОЕ ОСНОВДИИЕ

Конечно, как только нужное соотношение нарушится и волна станет длиннее или короче резонансного значения, т. е. высота стойки не будет равна четверти длины волны.



металлическая стойка потеряет свои изоляционные свойства и станет потреблять энергию.

Другой, замкнутый накоротко конец стойки тоже обладает интересным свойством: стоячая волна располагается так, что на этом конце напряжение высокой частоты равно нулю. А это значит, что его можно укрепить на заземленной металлической поверхности и никакой утечки тока это не вызовет.

Это замечательное свойство четвертьволновой замкнутой накоротко на одним конце линии находит широкое применение в технике метровых и сантиметровых волн. На более длинных волнах характер этого явления сохраняется, но металлический изолятор оказывается слишком длинным и практически неприменим. Например, на самой короткой волне средневолнового диапазона четвертьволновая линия имела бы длину 50 м. Даже на коротких волнах четверть волны составляет несколько метров.

Г


Обязательным условием хорошей работы радиолампы является высокий вакуум. Но для того чтобы обеспечить нужную степень вакуума (см. стр. 26), недостаточно только откачать из баллона лампы воздух. В металле, из которого сделаны электроды лампы и их держатели, содержится довольно много газов: кислорода, водорода, азота и др. Их называют окклюдированными газами.

С течением времени, в особенности в связи с неизбежным при работе лампы нагревом электродов, окклюдированные газы выделяются из металла, вакуум ухудшается и лампа перестает работать нормально.

Составить представление о количестве содержащихся в металле газов можно по такому примеру: если из 1 мм никеля, часто служащего материалом для изготовления анодов ламп, удалить весь окклюдированный в нем газ, то 136

этот газ при нормально.м атмосферном давлении займет объем 100 мм.

Лучше всего освобождать металл от газов нагреванием, но нагрев надо производить в уже откачанном баллоне, продолжая откачку по мере выделения газа. Как же это сделать?

На вакуумных заводах нагрев электродов осуществляют очень простым и эффективным способом. На баллон лампы, находящейся на откачном станке, надвигается спираль из нескольких витков медной трубки, и все металлические части, находящиеся внутри баллона, почти моментально раскаляются докрасна. Температура их доходит до 1000° С. При таком сильном нагреве из металла выделяется весь газ, который сейчас же откачивается насосом. Высокий вакуум лампы теперь обеспечен.

Но что же это за чудодейственная спираль? Попробуем осторожно прикоснуться к ней рукой. Странно, на ощупь она совсем холодная. В ее внутреннее пространство тоже можно поместить палец без всякого опасения - палец никакого тепла чувствовать не будет. Но если у вас на палец надето кольцо, то вам этот опыт проделывать не стоит - кольцо немедленно раскалится и обожжет палец.

Секрет удивительной спирали, накаливающей докрасна металлы и совершенно холодной на ощупь, прост. По спирали пропускаются токи высокой частоты. Для поля, создаваемого этой спиралью, стеклянная колба и пустота внутри нее не являются преградой. Создаваемое спиралью быстропеременное магнитное поле пересекает металлические предметы, находящиеся в зоне его действия, вследствие чего в них развиваются столь сильные вихревые токи, что металл раскаляется. Но наше тело магнитное поле не нагревает: из-за большого сопротивления в нем не могут возникнуть сколько-нибудь значительные токи, поэтому мы можем безнаказанно помещать руку внутрь спирали.

Метод нагрева токами высокой частоты с еге замечательными возможностями был перенесен из вакуумной промышленности в другие отрасли народного хозяйства, где он находит все более широкое применение.




1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 [ 22 ] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

© 2025 Constanta-Kazan.ru
Тел: 8(843)265-47-53, 8(843)265-47-52, Факс: 8(843)211-02-95