Главная Бухгалтерия в кармане Учет расходов Экономия на кадровиках Налог на прибыль Как увеличить активы Основные средства
Главная ->  Занимательная радиотехнология 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 [ 23 ] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46



Не думайте, что эта проблема, во-первых, очень проста и, во-вторых, не имеет никакого отношения к радиотехнике.

У нас есть холодная котлета. Как ее разогреть?

Со стародавних времен это делается очень примитивно. Котлету кладут на сковородку и помещают на огонь. Огонь нагревает сковородку, сковородка нагревает прилегающий к ней поверхностный слой котлеты. От этого слоя тепло медленно - в силу малой теплопроводности материала - распространяется внутрь котлеты. Для ее прогревания, даже при условии частого перевертывания, требуется много времени. А поверхностный слой котлеты в это время пересыхает, пережаривается, превращается почти в уголь. Вкус котлеты ухудшается.

Можно ли сделать так, чтобы котлета моментально прогревалась вся насквозь, не покрываясь коркой и не теряя вкуса?

Развитие радиотехники позволило разрешить эту кулинарную проблему. Удобный способ разогрева можно осуществить при помощи токов высокой частоты, причем огромная ценность высокочастотного нагрева, разурлеется, определяется отнюдь не только кулинарными его применениями.

Токи высокой частоты все глубже проникают в самые различные отрасли народного хозяйства. При этом ряд своеобразных особенностей, свойственных высоким частотам, позволяет применять их для противоречивых на первый взгляд целей.

Сравним, например, такие две области использования токов высокой частоты, как закалка стальных изделий и сушка дерева.

Сущность закалки заключается, как известно, в том, чтобы резко повысить твердость и прочность изделия на поверхности, сохранив в то же время без изменения глубинные слои металла - сердцевину изделия, иначе металл станет хрупким. Высокочастотная закалка отлично справляется с этой задачей, позволяя раскалить до нужной температуры только тонкий слой металла у самой поверх-138

ности, не нагревая при этом его внутренних слоев. По качеству закалки и производительности этот новый метод оставляет далеко позади старые термические методы закалки металла, применявшиеся в течение веков.

В другой области- области прогрева и сушки неметаллических материалов, например дерева (и котлеты тоже), - ставится противоположная задача: прогреть материал одинаково равномерно по всей его глубине. И эта задача окат залась по плечу токам высокой частоты: высокочастотная сушка дерева как по качеству обработки, так и по сокращению количества времени, необходимого для нее, дает несравненно лучшие результаты, чем все другие тепловые способы, применяемые для этой цели.

Как же удается заставить токи высокой частоты выполнять такие совершенно различные требования?

Дело здесь в том, что в технике высоких частот мы можем отдельно использовать магнитные и электрические поля. В катушке колебательного контура энергия переходит в магнитное поле, а в конденсаторе - в электрическое. Когда в катушку, по которой проходит сильный ток высокой частоты, помещают предмет из стали, высокочастотное магнитное поле вызывает появление в нем вихревых токов такой же частоты. Но вследствие поверхностного эффекта эти токи распространяются только в верхнем слое металла, а в глубине они резко ослаблены или даже вообще отсутствуют. В результате из-за разогрева этими поверхностными токами у стального изделия образуется как бы раскаленная докрасна рубашка. Происходит все это настолько быстро, что, несмотря на высокую теплопроводность металла, в глубину нагрев распространиться не успевает. После резкого охлаждения раскаленного слоя на поверхности изделия остается твердый износоустойчивый покров, сердцевина же никаких структурных изменений не претерпевает, металл там сохраняет свою вязкость.

Подбирая частоту тока, можно прогревать металл на разную глубину. Чем ниже частота, тем глубже закалка (см. табл. на стр. 140).

Если в ту же катушку поместить кусок дерева или какого-либо другого неметаллического материала, то с ним ничего не произойдет - магнитное поле его не нагреет.

Иная картина получится, если дерево будет помещено между обкладками конденсатора колебательного контура.



Быстропеременное электрическое поле приводит к появлению в неметаллических материалах диэлектрических потерь, которые вызываются, с одной стороны, токами проводимости, возникающими в таких материалах вследствие несовершенства их изоляционных свойств, а с другой - трением между молекулами, которые меняют свое положение внутри вещества при каждой перемене направления электрического поля. Чем выше частота тока, тем больше диэлектрические потери этих видов.

Глубина закаливаемого слоя, мм

Частота, гц

0,5- 1

5-105-10

1- 2

10-3-10

2- 5

3- 8

8-15

В отличие от токов высокой частоты в металлах, которые распространяются в основном только по поверхности; диэлектрические потери имеют место во всей толще материала, а следовательно, и прогрев его происходит равномерно по всей толщине. В этом заключается главнейшее отличие такого способа нагрева от всех других методов, основанных на использовании внешнего тепла; там нагрев начинается снаружи, и тепло лишь постепенно проникает внутрь тела. Преимущества такого сплошного прогрева огромны: он позволяет во много раз сократить время сушки и прогрева и почти полностью устранить брак, который был неизбежен при применении прежних методов из-за неравномерности нагревания по толщине (например, растрескивание дерева). Этот способ позволяет почти моментально разогреть и котлету, разогреть сразу по всей ее толщине.

Для-сушки и прогрева неметаллических материалов т- дерева, пластмасс и многих органических веществ - применяются токи значительно более высоких частот, чем для закалки: примерно от 300 кгц до 20, а в отдельных случаях даже до 100 Мгц. Выбор частоты зависит от назначения высокочастотной установки. Например, для сушки дерева хорошие результаты дают частоты 300-500 кгц, для предварительного прогрева пластмасс перед прессованием 20- 40 Мгц, а для склеивания плоских слоистых пластмасс типа но

гетинакса и текстолита еще более высокие частоты 40- 100 Мгц.

Чем лучше изоляционные свойства прогреваемого материала, тем более высокая частота тока нужна, чтобы вызвать в материале достаточно большие диэлектрические потери.

Так, используя в отдельности магнитное и электрическое поля, создаваемые токами высокой частоты, можно получить при помощи них самые различные и на первый взгляд противоположные по своему характеру результаты.

Чрезвычайно быстрое развитие техники в наше время дает интересную возможность на протяжении сравнительно немногих лет проследить, как техническая шутка превращается в более или менее обоснованный прогноз, а послед-


ний очень быстро реализуется. Карикатура-шутка, помещенная выше заимствована из журнала Радио за 1947 г. 17 лет назад идея использования токов высокой частоты для кулинарных целей могла быть выражена только в виде шутки. В первом издании настоящей книги эта идея была уже вынесена в заголовок очерка о применении токов высокой частоты. А когда было уже сверстано второе издание Занимательной радиотехники , в газете Вечерняя Москва появилась следующая заметка:



На ВДНХ

ЧУДО-ПЕЧЬ

Приготовить праздничный обед на десять человек за двенадцать с половиной минут-ведь это непосильно ни для самой опытной хозяйки, ни даже для кулинара-виртуоза.

Между тем такую задачу решили люди, далекие от кулинарии. Группа работников Научно-исследовательского института токов высокой частоты создала опытный образец чудо-печи. Гуся, утку, курицу можно зажарить в ней за шесть минут, сварить килограмм мяса - за две с половиной минуты и за четыре минуты испечь килограммовый бисквит.

Приготовить пищу с такой быстротой помогают токи сверхвысокой частоты.

Чудо-печь демонстрируется в павильоне Российской Федерации ВДНХ. Первые четыре такие печи скоро появятся на предприятиях общественного питания (ТАСС).

( Вечерняя Москва , № 183 от 6 августа 1962 г.)


Каким образом электрические заряды могут застыть? Ведь они отличаются исключительной подвижностью. Именно на этом их свойстве основана работа электронных приборов, которым обязаны грандиозные успехи современной техники.

И второй вопрос: чем может быть полезно то, что заряды застынут? Застывший заряд неподвижен, неуправляем, а ведь как раз движение зарядов и управление их движением являются основой работы электронных и электрических устройств.

Тем не менее все же заряды могут застывать и в таком виде приносят несомненную пользу, упрощая решение многих технических задач.

Движущийся заряд создает в окружающем пространстве магнитное поле. Такое поле образуется вокруг провода, по которому течет ток. Если свить провод в катушку, то магнитное поле усилится, а если внутрь катушки поместить железный сердечник, то он превратится в магнит с очень сильным полем. Такие устройства - электромагниты - во всевозможных разновидностях применяются исключительно широко.

Но для поддержания электромагнита в рабочем состоянии нужно беспрерывно пропускать по его обмотке электрический ток. Это далеко не всегда бывает рационально. В очень многих случаях было бы удобно получать магнитное поле, не затрачивая электроэнергии.

Мы знаем, что это возможно. Существуют постоянные магниты. Они создают в пространстве вокруг себя неизменное магнитное поле, на поддержание которого не нужно затрачивать энергии. В результате электромагниты применяются только тогда, когда это действительно необходимо, в других же случаях они заменяются постоянными магнитами.

Было бы очень удобно иметь прибор, создающий столь же неизменное электрическое поле. Принципиально это кажется легко осуществимым. Любой электрический заряд возбуждает вокруг себя электрическое поле. Чтобы получить поле достаточно осязаемой величины, надо только сконцентрировать в одном месте некоторое количество одноименных зарядов. Но в действительности сделать это крайне трудно.

В проводниках заряды очень подвижны, разделить их легко, приложив к проводнику электрическое поле. Но вследствие своей подвижности заряды, после того как будет снято поле, моментально распределятся равномерно по всему объему проводника, заряды разных знаков перемешаются , и никакого внешнего поля у проводника не будет. Можно было бы пойти на хитрость и, разделив заряды разных знаков, поместить между ними изолятор. Таким прибором мы пользуемся-это конденсатор. Он очень полезен, ио это совсем не то, что магнит. Магнит сохраняет намагниченность годами и десятилетиями, его можно замыкать железом и т. д. Магнит можно испортить только сильным



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 [ 23 ] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

© 2025 Constanta-Kazan.ru
Тел: 8(843)265-47-53, 8(843)265-47-52, Факс: 8(843)211-02-95